

Mr. James Saric Remedial Project Manager USEPA Region 5 77 West Jackson Boulevard (SR-6J) Chicago, IL 60604-3511

Subject:

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site Supplemental Remedial Investigations/Feasibility Studies Monthly Progress Report Area 1 – Morrow Dam to Plainwell Dam Area 2 – Plainwell Dam to Otsego City Dam (Otsego City Impoundment) July 2010

Dear Jim:

Attached is the 41st monthly progress report for the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site Supplemental Remedial Investigation/ Feasibility Study (SRI/FS). This progress report is submitted as per Paragraph 37 of the February 2007 Administrative Settlement Agreement and Order on Consent (AOC) for Remedial Investigations/Feasibility Studies (Docket No. V-W-07-C-864), as well as Section 7.1 of the associated Statement of Work (SOW). If you have any questions, please do not hesitate to contact me.

Sincerely,

ARCADIS U.S., Inc.

Michael J. Erickson, P.E.

Vice President

DEP/plf Attachment

Copies:

Michael Berkoff, USEPA
Sam Chummar, USEPA
Sam Borries, USEPA
Paul Bucholtz, MDNRE (with Attachment A)
Jeff Keiser, CH2M HILL (with Attachment A)
Todd Goeks, NOAA (with Attachment A)
Richard Gay, Weyerhaeuser Company
Martin Lebo, Ph.D., Weyerhaeuser Company
Kathy Huibregtse, RMT Inc. (with Attachment A)
J. Michael Davis, Esq., Georgia-Pacific LLC
Garry Griffith, P.E., Georgia-Pacific LLC
Paul Montney, P.E., Georgia-Pacific LLC

ARCADIS

10559 Citation Drive

Suite 100 Brighton

Michigan 48116 Tel 810.229.8594

Fax 810.229.8837 www.arcadis-us.com

SEDIMENTS

Date:

August 13, 2010

Contact:

Michael J. Erickson, P.E.

Phone:

810.225.1924

Email:

michael.erickson@ arcadis-us.com

Our ref:

B0064539.0001.00014

#2

MONTHLY PROGRESS REPORT FOR THE ALLIED PAPER, INC./PORTAGE CREEK/ KALAMAZOO RIVER SUPERFUND SITE SRI/FS AREA 1 (MORROW DAM TO PLAINWELL DAM) AREA 2 (PLAINWELL DAM TO OTSEGO CITY DAM – OTSEGO CITY IMPOUNDMENT)

REPORT #41, JULY 2010

PREPARED BY ARCADIS U.S., INC. AUGUST 13, 2010

ON BEHALF OF GEORGIA-PACIFIC LLC

SUBMITTED TO

JAMES SARIC, REMEDIAL PROJECT MANAGER UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Monthly Progress Report for the Allied Paper, Inc./Portage Creek/ Kalamazoo River Superfund Site SRI/FS – Area 1 and 2

REPORT #41, JULY 2010

Significant Developments and Activities during the Period, Including Actions Undertaken Pursuant to the AOC and SOW

- On July 2, ARCADIS U.S., Inc. (ARCADIS) submitted the draft Area 2/Otsego City Impoundment SRI/FS Work Plan to the United States Environmental Protection Agency (USEPA).
- On July 6, USEPA requested that Appendix A of the final Area 1 Work Plan Supplement: Baseline Ecological Risk Assessment Work Plan (Area 1 BERA Work Plan) be removed and that mention of the exposure point concentration (EPC) development work group be included.
- On July 6, ARCADIS forwarded to CH2M HILL, USEPA, United States Fish and Wildlife Service (USFWS), and CDM the University of Ottawa proposal titled *Predicting the Sensitivity of Any Avian Species to Embryotoxic Effects of Any PCB Congener*.
- On July 15, the Michigan Department of Natural Resources and Environment (MDNRE) notified USEPA that continued monitoring of groundwater in the former Plainwell Impoundment Time Critical Removal Area (TCRA) Area was not required. This sampling is discussed in Section 3.4.6 of the Area 1 SRI/FS Work Plan.
- On July 20, ARCADIS submitted to USEPA the USEPA-approved revised final Area 1 BERA Work Plan.
- On July 22, ARCADIS participated in a teleconference meeting of the Toxicity Reference Values
 (TRV) work group. Prior to the call, ARCADIS forwarded to CH2M HILL, USEPA, USFWS, and CDM
 support materials for egg-based TRV development, the agenda, and a status summary of all TRVs to
 be developed by the group.
- Georgia-Pacific LLC awaits USEPA approval of the Area 2/Otsego City Impoundment SRI/FS Work Plan.
- Georgia-Pacific LLC awaits USEPA approval to discontinue monitoring of groundwater in the former Plainwell Impoundment TCRA Area.

Data Collected and Field Activities Conducted during the Period

On July 13, the former Plainwell Impoundment TCRA Area Transects T00 and T01 were surveyed.
 Data are presented in Table A. T00 is a new transect near the former Plainwell Dam that was surveyed at the request of MDNRE. MDNRE requested this verbally on May 6.

Monthly Progress Report for the Allied Paper, Inc./Portage Creek/ Kalamazoo River Superfund Site SRI/FS – Area 1 and 2

REPORT #41, JULY 2010

Laboratory Data Received during the Period

- On July 27, MDNRE forwarded to ARCADIS the available portion of site-related data from the most recent Michigan Fish Contaminant Monitoring Program sampling on the Kalamazoo River. Georgia-Pacific LLC awaits the remainder of the data from the most recent sampling.
- Validated data for the laboratory sample delivery groups (SDGs) received in May are included in this monthly report. These data include the PCB results from TestAmerica Laboratories, Inc. for the 15 groundwater and two surface water samples collected in the former Plainwell Impoundment TCRA Area in April (SDG KAL544) (Table B). In accordance with Section 2.1 of the SOW, paper and electronic copies of these laboratory data are included as part of the monthly progress reports. Attachment A contains the validation reports for these data packages. The enclosed compact disk also contains the electronic data deliverables for these data.

Problems

 Transect T01, to be surveyed in the former Plainwell Impoundment TCRA Area as part of the bathymetric work performed in May, could not be surveyed on May 19th due to high flow conditions.
 Flows remained high (>1,000 cubic feet per second at Comstock) in June.

Actions Taken to Correct Problems

 Transect T01 and the new transect T00 were surveyed in July when flow conditions allowed it to be performed safely.

Developments Anticipated during the Next Two Reporting Periods

- In August, ARCADIS expects to have a complete set of TRVs for use in the Area 1 BERA that has been agreed upon with representatives of USEPA, USFWS, and MDNRE.
- On August 5, the TRV work group is scheduled to have a teleconference to finalize egg-based TRVs for the Area 1 BERA.
- By August 15, ARCADIS is scheduled to submit to USEPA the Semi-Annual Progress Report for the period from February through July 2010. This submittal is discussed in Section 7.2 of the SOW.
- On August 17, USEPA and ARCADIS are scheduled to meet in Detroit to discuss the draft Area 2/Otsego City Impoundment SRI/FS Work Plan.

Monthly Progress Report for the Allied Paper, Inc./Portage Creek/ Kalamazoo River Superfund Site SRI/FS – Area 1 and 2

REPORT #41, JULY 2010

•	In August or September, ARCADIS expects to schedule a meeting with the Exposure Point
	Concentration (EPC) work group (consisting of representatives of USEPA, USFWS, and MDNRE) ir
	Chicago to discuss the development of exposure units and EPC for the Area 1 BERA.

Georgia-Pacific LLC

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site Supplemental Remedial Investigations/Feasibility Studies Monthly Report #41, July 2010

<u>Table A — Plainwell TCRA Area — Bathymetric Data Collected in July 2010</u>

Transect	Station	Northing	Easting	Distance from North Bank (ft)	Water Depth (ft)	Water Elevation (ft)	Sediment Elevation (ft)
T00	0+00	351084.8	12772085.9	0	0.0	699.3	-
T00	0+10	351083.6	12772076.0	10	0.9	-	698.4
T00	0+20	351082.4	12772066.1	20	3.9	-	695.4
T00	0+30	351081.1	12772056.2	30	5.2	-	694.1
T00	0+40	351079.9	12772046.2	40	4.8	-	694.5
T00	0+50	351078.7	12772036.3	50	5.5	-	693.8
T00	0+60	351077.5	12772026.4	60	5.2	-	694.1
T00	0+70	351076.3	12772016.5	70	5.7	-	693.6
T00	0+80	351075.0	12772006.5	80	5.8	-	693.5
T00	0+90	351073.8	12771996.6	90	2.9	-	696.4
T00	1+00	351072.6	12771986.7	100	0.4	-	698.9
T00	1+00	351072.5	12771986.1	100	0.0	699.3	-
T01	0+00	350825.9	12772273.7	0	0.0	699.9	-
T01	0+10	350825.8	12772263.7	10	4.1	-	695.8
T01	0+20	350825.7	12772253.7	20	5.5	-	694.4
T01	0+30	350825.7	12772243.7	30	1.6	-	698.3
T01	0+40	350825.6	12772233.7	40	1.6	-	698.3
T01	0+50	350825.5	12772223.7	50	1.6	-	698.3
T01	0+60	350825.5	12772213.7	60	1.5	-	698.4
T01	0+70	350825.4	12772203.7	70	1.5	-	698.4
T01	0+80	350825.3	12772193.7	80	1.4	-	698.5
T01	0+90	350825.3	12772183.7	90	2.5	-	697.4
T01	1+00	350825.2	12772173.7	100	1.3	-	698.6
T01	1+10	350825.1	12772163.7	110	1.2	-	698.7
T01	1+20	350825.1	12772153.7	120	2.0	-	697.9
T01	1+30	350825.0	12772143.7	130	1.7	-	698.2
T01	1+40	350824.9	12772133.7	140	0.4	-	699.5
T01	1+50	350824.9	12772123.7	150	1.2	-	698.7
T01	1+60	350824.8	12772113.7	160	3.1	-	696.8
T01	1+70	350824.7	12772103.7	170	1.9	-	698.0
T01	1+80	350824.7	12772093.7	180	0.3		699.6
T01	1+80	350824.7	12772093.3	180	0.0	699.9	-

Notes:

- 1. Elevations based on the National Geodetic Vertical Datum of 1929.
- 2. Coordinates are based on the North American Datum of 1983 Michigan South Zone International Foot.
- 3. Coordinates and elevations were obtained using GPS methods.

Georgia-Pacific LLC Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site Supplemental Remedial Investigations/Feasibility Studies Monthly Report #41, July 2010

<u>Table B — Validated PCB Results for Groundwater and Surface Water Samples Collected in the Plainwell TCRA — Data Received in May 2010</u>

Sample Name: Date Collected: Location ID:	Units	TS31012 [TS31013] 04/05/10 SG-5	TS31014 04/09/10 SG-5	TS40068 04/05/10 MW-15	TS40071 04/06/10 MW-10	TS40072 04/06/10 MW-11	TS40073 [TS40074] 04/06/10 MW-14	TS40075 04/06/10 MW-12	TS40076 04/07/10 MW-13	TS40077 04/07/10 MW-5
PCBs			•							
Aroclor-1016	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Aroclor-1221	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Aroclor-1232	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Aroclor-1242	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Aroclor-1248	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Aroclor-1254	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Aroclor-1260	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Total PCB	ug/L	0.049 U [0.048 U]	0.049 U	0.047 U	0.051 U	0.051 U	0.048 U [0.048 U]	0.051 U	0.048 U	0.047 U
Inorganics										
Calcium	ug/L	80,500 [85,500]	83,400	108,000	246,000	103,000	176,000 [168,000]	154,000	116,000	356,000
Magnesium	ug/L	22,300 [23,800]	22,900	27,900	30,700	24,200	40,000 [38,200]	31,600	28,000	77,400
Potassium	ug/L	2,490 B [2,670 B]	2,510 B	2,560 B	1,140 B	1,930 B	1,130 B [1,150 B]	5,440	2,120 B	3,530 B
Sodium	ug/L	29,600 [31,400]	28,300	36,600	49,000	35,000	35,300 [33,500]	11,900	73,400	54,400
Miscellaneous										
Alkalinity	mg/L	230 [240]	230	260	450	270	230 [220]	360	330	390
Chloride	mg/L	56 [58]	47	39	75	60	50 [50]	12	110	68
Sulfate	mg/L	35 [36]	30	110	220	79	330 [340]	110	46	770
Total Dissolved Solids	mg/L	310 [343]	397	483	922	458	793 [769]	601	544	1,620
Total Organic Carbon	mg/L	6.3 [6.4]	6.3	2.2	15	3.3	2.8 [2.9]	22.6	3.3	7.5
Total Suspended Solids	mg/L	15.7 [15.9]	23.9	8.6	10.9	12.8	13.1 [14.4]	0.5 U	15	15.5

See Notes on Page 2.

Georgia-Pacific LLC

Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site Supplemental Remedial Investigations/Feasibility Studies Monthly Report #41, July 2010

<u>Table B — Validated PCB Results for Groundwater and Surface Water Samples Collected in the Plainwell TCRA — Data Received in May 2010</u>

Sample Name: Date Collected: Location ID:	Units	TS40078 04/07/10 MW-4	TS40079 04/07/10 MW-9	TS40080 04/08/10 MW-8	TS40081 04/08/10 MW-2	TS40082 04/08/10 MW-7	TS40083 [TS40084] 04/08/10 MW-2	TS40085 04/08/10 MW-6	TS40087 04/09/10 MW-1
PCBs									
Aroclor-1016	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Aroclor-1221	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Aroclor-1232	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Aroclor-1242	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Aroclor-1248	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Aroclor-1254	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Aroclor-1260	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Total PCB	ug/L	0.048 U	0.048 U	0.048 U	0.049 U	0.048 U	0.048 U [0.048 U]	0.048 U	0.049 U
Inorganics									
Calcium	ug/L	179,000	85,400	110,000	154,000	160,000	149,000 [152,000]	115,000	455,000
Magnesium	ug/L	39,700	22,200	27,400	34,900	34,000	29,600 [30,300]	24,500	146,000
Potassium	ug/L	2,600 B	1,950 B	2,220 B	2,230 B	1,990 B	1,920 B [2,000 B]	1,670 B	5,770
Sodium	ug/L	70,300	54,800	86,600	73,100	74,000	72,100 [74,000]	68,600	44,700
Miscellaneous									
Alkalinity	mg/L	350	260	290	350	330	350 [340]	280	350
Chloride	mg/L	110	83	130	110	120	120 J [29 J]	110	34
Sulfate	mg/L	220	38	68	140	150	110 J [21 J]	87	1,200
Total Dissolved Solids	mg/L	836	404	649	803	807	761 [754]	643	2,470
Total Organic Carbon	mg/L	4.9	1.5	2.3	5.2	4.8	5.1 [5.2]	4.5	11
Total Suspended Solids	mg/L	12.1	4.4	9.5	17.3	19.3	21.1 [20.9]	17.9	44.2

Notes:

- B The reported value was obtained from a reading less than the contact required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL).
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
- mg/L milligrams per liter.
- ug/L micrograms per liter.

Samples analyzed by TestAmerica Laboratories, Inc.

Duplicate results are in brackets.

ARCADIS

Attachment A

Validation Report

Kalamazoo River Superfund Site Plainwell Ground Waters

Data Review

PLAINWELL, MICHIGAN

PCB, Metals and Miscellaneous Analyses

SDG# KAL544

Analyses Performed By: TestAmerica Laboratories Burlington, Vermont

Report: # 12122R Review Level: Tier II

Project: B0064539.0001.00500

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #KAL544 for samples collected in association with the Plainwell site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample	Parent	ent An		nalysis	alysis		
Sample ID	Lab ID	Matrix	Collection Date	Sample	voc	svoc	PCB	MET	MISC	
TS31012	825001	Ground Water	4/5/2010				Χ	Х	Х	
TS31013	825002	Ground Water	4/5/2010	TS31012			Χ	Х	Х	
TS40068	825003	Ground Water	4/5/2010				Χ	Х	Х	
TS40071	825171	Ground Water	4/6/2010				Χ	Х	Х	
TS40073	825172	Ground Water	4/6/2010				Χ	Х	Х	
TS40074	825173	Ground Water	4/6/2010	TS40073			Χ	Х	Х	
TS40072	825174	Ground Water	4/6/2010				Χ	Х	Х	
TS40075	825175	Ground Water	4/6/2010				Χ	Х	Х	
TS40076	825368	Ground Water	4/7/2010				Χ	Х	Х	
TS40077	825369	Ground Water	4/7/2010				Χ	Х	Х	
TS40078	825370	Ground Water	4/7/2010				Χ	Х	Х	
TS40079	825371	Ground Water	4/7/2010				Χ	Х	Х	
TS40081	825624	Ground Water	4/8/2010				Χ	Х	Х	
TS40082	825625	Ground Water	4/8/2010				Χ	Х	Χ	
TS40083	825626	Ground Water	4/8/2010				Х	Х	Х	
TS40084	825627	Ground Water	4/8/2010	TS40083			Х	Х	Х	
TS40085	825628	Ground Water	4/8/2010				Х	Х	Х	
TS40080	825629	Ground Water	4/8/2010				Х	Х	Х	
TS31014	825882	Ground Water	4/9/2010				Х	Х	Х	
TS40087	825883	Ground Water	4/9/2010				Х	Х	Х	

Note:

- 1. Miscellaneous parameters include total organic carbon (TOC), total suspended solids (TSS), total dissolved solids (TDS), chloride, sulfate, and alkalinity.
- 2. Matrix spike/matrix spike duplicate/laboratory duplicate was performed on sample locations TS40068 and TS31014.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to (United Stated Environmental Protection Agency) USEPA Method 8082. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II (SOP HW-45, Revision 1).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

The data presented in this package has been derived using a procedure developed by TestAmerica as an attempt to improve the analytical process of calibration, identification and quantitation of PCBs as Aroclors. Key components of this procedure include:

Calibration

The response function of the electron capture detector is inherently non-linear. While significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to straighten the curve and allow the use of response factors for calibration purposes.

During the initial calibration, a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for non-linearity at the low end of the calibration curve.

Identification

Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of false positive and false negative peak identifications.

The determination of which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Silvon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results.

Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which is less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results.

POLYCHLORINATED BIPHENYLS (PCBs) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8082	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4 °C
377-040 0002	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled @ 4 °C

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. PCB analysis requires the surrogate compounds must exhibited recoveries within the method established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Column 1 Recovery	Column 2 Recovery
TS40082	Tetrachloro-m-xylene	AC	<ll but="">10%</ll>
TS40084	Decachlorobiphenyl	AC	AC

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
the upper central limit (LIL)	Non-detect	No Action
> the upper control limit (UL)	Detect	J

Control Limit	Sample Result	Qualification
< the lower control limit (LL) but > 10%	Non-detect	J
< trie lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10 %	Detect	J
One surrogate exhibiting recovery	Non-detect	No Action
outside the control limits but > 10%	Detect	NO ACION

4. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the method established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the method established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the method established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TS31012/TS31013	All Aroclors	0.049 U	0.048 U	AC
TS40073/TS40074	All Aroclors	0.048 U	0.048 U	AC
TS40083/TS40084	All Aroclors	0.048 U	0.047 U	AC

AC Acceptable U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. Compound Identification

The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors.

These identifications were not reviewed by the data validator.

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PCBs

PCBs; SW846 8082	Repo	orted		rmance eptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks		•			
A. Method blanks		Х		Х	
B. Field blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	
Moisture Content		Х		Х	

INORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Methods 6010B, 300.0, 310.1 SM5310, and SM2540. Data were reviewed in accordance with USEPA National Functional Guidelines of October 2004.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
 - B The reported value was obtained from a reading less than the contract-required detection limit (CRDL), but greater than or equal to the instrument detection limit (IDL).
- Quantitation (Q) Qualifiers
 - E The reported value is estimated due to the presence of interference.
 - N Spiked sample recovery is not within control limits.
 - Duplicate analysis is not within control limits.
- Validation Qualifiers
 - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
 - UB Analyte considered non-detect at the listed value due to associated blank contamination.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

METALS ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 6010B	Water	180 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of less than 2.
	Soil	180 days from collection to analysis	Cooled @ 4 °C.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the instrument detection limit (IDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No qualification of the sample results was required.

3. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

3.1 MS Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS analysis performed on sample locations TS40068 and TS31014 exhibited recoveries within the control limits.

3.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the

parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate sample results exhibited RPD within the control limit.

4.0 Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Calcium	80500	85500	6.0 %
TS31012/TS31013	Magnesium	22300	23800	6.5 %
1331012/1331013	Potsassium	2490 B	2670 B	6.9 %
	Sodium	29600	31400	5.9 %
	Calcium	176000	168000	4.6 %
TS40073/TS40074	Magnesium	40000	38200	4.6 %
1540073/1540074	Potsassium	1130 B	1150 B	1.7 %
	Sodium	35300	33500	5.2 %
	Calcium	149000	152000	1.9 %
TS40083/TS40084	Magnesium	29600	30300	2.3 %
1540083/1540084	Potsassium	1920 B	2000 B	4.0 %
	Sodium	72100	74000	2.6 %

AC Acceptable
U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

6. Furnace Analysis QC

No furnace analyses were performed on the samples.

7. Method of Standard Additions (MSA)

No samples were analyzed following the method of standard additions.

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR METALS

METALS; SW-846 6000/7000	Repo	orted		mance ptable	Not
,	No	Yes	No	Yes	Required
Inductively Coupled Plasma-Atomic Emission Spec	trometry	(ICP)			
Atomic Absorption – Manual Cold Vapor (CV)					
Tier II Validation					
Holding Times		X		Χ	
Reporting limits (units)		Χ		Χ	
Blanks					
A. Instrument Blanks		Х		Χ	
B. Method Blanks		Х		Χ	
C. Equipment/Field Blanks					Χ
Laboratory Control Sample (LCS)		Х		Χ	
Matrix Spike (MS) %R		Х		Χ	
Matrix Spike Duplicate (MSD) %R					X
MS/MSD Precision (RPD)					Χ
Field/Lab Duplicate (RPD)		X		Χ	•
Reporting Limit Verification		Χ		Χ	`
Raw Data		X		Χ	·

%R Percent recovery
RPD Relative percent difference

GENERAL CHEMISTRY ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Total Organic Carbon by SM5310	Water	28 days from collection to analysis	Cooled @ 4 °C; preserved to a pH of less than 2.
Total Dissolved Solids By SM2540	Water	7 days from collection to analysis	Cooled @ 4 °C.
Total Suspended Solids By SM2540	Water	7 days from collection to analysis	Cooled @ 4 °C.
Chloride by EPA 300.0	Water	28 days from collection to analysis	Cooled @ 4 °C.
Sulfate by EPA 300.0	Water	28 days from collection to analysis	Cooled @ 4 °C.
Alkalinity by EPA 310.1	Water	14 days from collection to analysis	Cooled @ 4 °C.

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were detected in the associated QA blanks; however, the associated sample results were greater than the BAL. No qualification of the sample results was required.

3. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

The correct number and type of standards were analyzed. The correlation coefficient of the initial calibration was greater than 0.995 and all initial calibration verification standard recoveries were within control limits.

All calibration standard recoveries were within the control limit.

4. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

4.1 MS Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory qualifier "N" will be removed.

The MS analysis performed on sample location TS40068 and TS31014 exhibited recoveries within the control limits.

4.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the CRDL. A control limit of 20% for water matrices and 35% for soil matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the CRDL, a control limit of one times the CRDL is applied for water matrices and two times the CRDL for soil matrices.

The laboratory duplicate sample results exhibited a RPD within the control limit.

5. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	TOC	6.3	6.4	1.5%
S31012/TS31013 CI St AI S40073/TS40074 TC TT TS TS TC TT TS TS TC TT	TDS	310	343	10.1%
T\$21012/T\$21012	TSS	15.7	15.9	1.2%
1331012/1331013	Chloride	56	58	3.5%
	Sulfate	35	36	2.8%
	Alkalinity	Result Result 6.3 6.4 310 343 15.7 15.9 56 58	4.2%	
	TOC	2.8	2.9	AC
TC 40072/TC 40074	TDS	793	769	3.0%
1340073/1340074	TSS	13.1	14.4	9.4%
	Chloride	50	50	0%

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Sulfate	330	340	2.9%
	Alkalinity	230	220	4.4%
Sample ID/Duplicate ID TS40083/TS40084	TOC	5.1	5.2	1.9%
	TDS	761	754	0.8%
TO 40000/TO 40004	TSS	21.1	20.9	0.6%
1540083/1540084	Compound Result Repult RPD Sulfate 330 340 2.9 Alkalinity 230 220 4.4 TOC 5.1 5.2 1.9 TDS 761 754 0.8 TSS 21.1 20.9 0.6 Chloride 120 29 Ne Sulfate 110 21 Ne	NC		
	Sulfate	110	21	NC
	Alkalinity	350	340	2.8%

AC Acceptable
U Not detected

The analytes chloride and sulfate associated with samples locations TS40083 and TS40084 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

6. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

7. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

General Chemistry: EPA 300.0, 310.1, SM5310, and SM2540	Rep	orted		mance ptable	Not Required
Omooro, and omeo-ro	No	Yes	No	Yes	Required
Miscellaneous Instrumentation					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Field blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Lab/Field Duplicate (RPD)		Х	Х		
Dilution Factor		Х		Х	
Moisture Content		Х		Х	

%D - difference

RPD Relative percent difference

VALIDATION PERFORMED

BY: Jeffrey L. Davin

SIGNATURE:

DATE: May 13, 2010

PEER REVIEW: Dennis Capria

DATE: June 30, 2010

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Lab Name: _	TestAmerica Burl	ington	Lab Code: STLV	TS31012		
Contract:	27000		Case: KZOO	SDG: KAL5	44	
Phase Type:	WATER	Married Aries	Lab Sample ID:	825001		
Phase Weight:	1030.	(mL)	Date Received:	04/06/10		
njection Volume:	1.0	(uL)	Date Extracted:	04/08/10		
Dilution Factor:	1.0		Date Analyzed:	04/29/10		
% Solids:			Sulfur Clean-up:	N	(Y/N)	

CAS NO.	COMPOUND	CONCENTRATION	QUALIFIER
		ug/L	
12674-11-2	Aroclor-1016	0.049	l u
11104-28-2	Aroclor-1221	0.049	- U
11141-16-5	Aroclor-1232	0.049	
53469-21-9	Aroclor-1242	0.049	
12672-29-6	Aroclor-1248	0.049	
11097-69-1	Aroclor-1254	0.049	U
11096-82-5	Aroclor-1260	0.049	U

Lab Name: _	TestAmerica Buri	lington	Lab Code: STLV	TS31013		
Contract:	27000	W-2000	Case: KZOO	SDG:	KAL544	
Phase Type:	WATER		Lab Sample ID:	825002		
Phase Weight:	1040.	(mL)	Date Received:	04/06/10		
Injection Volume:	1.0	(uL)	Date Extracted:	04/08/10		
Dilution Factor:	1.0	<u>.</u>	Date Analyzed:	04/29/10		
% Solids:			Sulfur Clean-up:	N	(Y/N)	

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	<u>_</u>
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	11
11096-82-5	Aroclor-1260	0.048	

					TS40068		
Lab Name: _	TestAmerica Burling	iton	Lab Code:	STLV			
Contract:	27000		Case:	KZOO	SDG:	KAL544	
Phase Type:	WATER	<u></u>	La	ıb Sample ID:	825003		
Phase Weight:	1060.	(mL)	Da	ate Received:	04/06/10		
Injection Volume:	1.0	(uL)	Da	nte Extracted:	04/08/10		
Dilution Factor:	1.0		Di	ate Analyzed:	04/29/10		
% Solids:			Sul	fur Clean-up:	N		(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.047	U
11104-28-2	Aroclor-1221	0.047	U
11141-16-5	Aroclor-1232	0.047	U
53469-21-9	Aroclor-1242	0.047	U
12672-29-6	Aroclor-1248	0.047	U
11097-69-1	Aroclor-1254	0.047	U
11096-82-5	Aroclor-1260	0.047	U

Lab Name:	TestAmerica Burl	ington	Lab Code: STLV	т	TS40071	
Contract:	27000		Case: KZOO	SDG:	KAL544	
Phase Type:	WATER		Lab Sample ID:	825171		
Phase Weight:	975.	(mL)	Date Received:	04/07/10		
Injection Volume:	1.0	(uL)	Date Extracted:	04/08/10		
Dilution Factor:	1.0	······································	Date Analyzed:	04/29/10		
% Solids:			Sulfur Clean-up:	N	(Y/N)	

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER	
12674-11-2	Aroclor-1016	0.051	U	
11104-28-2	Aroclor-1221	0.051	U	
11141-16-5	Aroclor-1232	0.051	U	
53469-21-9	Aroclor-1242	0.051	U	
12672-29-6	Aroclor-1248	0.051	U	
11097-69-1	Aroclor-1254	0.051	u u	
11096-82-5	Aroclor-1260	0.051	- II	

Lab Name:	TestAmerica Bur	lington	Lab Code: STLV	TS40073	
Lab Name: _	TestAmenca Dui	ington	Lab Code: STLV	L	
Contract:	27000		Case: KZOO	SDG:	KAL544
Phase Type:	WATER		Lab Sample ID:	825172	
Phase Weight:	1050.	(mL)	Date Received:	04/07/10	
Injection Volume:	1.0	(uL)	Date Extracted:	04/08/10	
Dilution Factor:	1.0		Date Analyzed:	04/29/10	
% Solids:			Sulfur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	U
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	U
11096-82-5	Aroclor-1260	0.048	Ū

Lab Name:	TestAmerica Burling	on	Lab Code: STLV	TS40074	
Contract:	27000		Case: KZOO	SDG: KAL5	44
Phase Type:	WATER	_	Lab Sample ID:	825173	
Phase Weight:	1050.	(mL)	Date Received:	04/07/10	
Injection Volume:	1.0	_ (uL)	Date Extracted:	04/08/10	
Dilution Factor:	1.0	_	Date Analyzed: _	04/29/10	
% Solids:		_	Sulfur Clean-up:	N	 (Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	U
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	U
11096-82-5	Aroclor-1260	0.048	U

Lab Name: ₋	TestAmerica Burl	lington	Lab Code: STLV	Т	S40072
Contract:	27000		Case: KZ00	SDG:	KAL544
Phase Type:	WATER		Lab Sample ID:	825174	
Phase Weight:	980.	(mL)	Date Received:	04/07/10	
Injection Volume:	1.0	(uL)	Date Extracted:	04/08/10	
Dilution Factor:	1.0	·····	Date Analyzed:	04/29/10	
% Solids:	A Company of the Comp	······································	Sulfur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Arocior-1016	0.051	
11104-28-2	Aroclor-1221	0.051	- U
11141-16-5	Aroclor-1232	0.051	U
53469-21-9	Aroclor-1242	0.051	U
12672-29-6	Aroclor-1248	0.051	U U
11097-69-1	Aroclor-1254	0.051	
11096-82-5	Aroclor-1260	0.051	

						TS40075	
Lab Name:	TestAmerica Burlin	gton	Lab Code:	STLV	L		_
Contract:	27000	<u> </u>	Case: _	KZOO	SDG:	KAL544	
Phase Type:	WATER		La	b Sample ID:	825175		
Phase Weight:	975.	(mL)	Da	ate Received:	04/07/10		
Injection Volume:	1.0	(uL)	Da	te Extracted:	04/08/10		
Dilution Factor:	1.0	**************************************	Da	ate Analyzed:	04/29/10	747	
% Solids:		<u> </u>	Sulf	fur Clean-up:	N	(Y/N)	

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.051	U
11104-28-2	Aroclor-1221	0.051	U
11141-16-5	Aroclor-1232	0.051	U
53469-21-9	Aroclor-1242	0.051	U
12672-29-6	Aroclor-1248	0.051	U
11097-69-1	Aroclor-1254	0.051	U
11096-82-5	Aroclor-1260	0.051	U

				•	TS40076
Lab Name: _	TestAmerica Bur	lington	Lab Code:STLV		
Contract:	27000		Case: KZOO	SDG:	KAL544
Phase Type:	WATER	***************************************	Lab Sample ID:	825368	
Phase Weight:	1045.	(mL)	Date Received:	04/08/10	
Injection Volume:	1.0	(uL)	Date Extracted:	04/13/10	
Dilution Factor:	1.0		Date Analyzed:	04/29/10	
% Solids:			Sulfur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	U
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	U
11096-82-5	Aroclor-1260	0.048	U

Lab Name:	TestAmerica Burl	ington	Lab Code: STLV		-	TS40077	
Contract:	27000		Case: KZOO		SDG:	KAL544	
Phase Type:	WATER		Lab Sample I	D:	825369		_
Phase Weight:	1060.	(mL)	Date Receive	d:	04/08/10		_
njection Volume:	1.0	(uL)	Date Extracte	ed:	04/13/10		
Dilution Factor:	1.0		Date Analyze	ed:	04/29/10		-
% Solids:			Sulfur Clean-u	ıp:	N		- (Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Arocior-1016	0.047	U
11104-28-2	Aroclor-1221	0.047	U
11141-16-5	Aroclor-1232	0.047	U
53469-21-9	Aroclor-1242	0.047	U
12672-29-6	Aroclor-1248	0.047	U
11097-69-1	Aroclor-1254	0.047	U
11096-82-5	Aroclor-1260	0.047	u u

					7	TS40078
Lab Name: _	TestAmerica Burlin	gton	Lab Code:	STLV		
Contract:	27000		Case: _	KZOO	SDG:	KAL544
Phase Type:	WATER	and the same	Lal	o Sample ID:	825370	
Phase Weight:	1045.	(mL)	Da	te Received:	04/08/10	
Injection Volume:	1.0	(uL)	Dat	e Extracted:	04/13/10	
Dilution Factor:	1.0		Da	te Analyzed:	04/29/10	
% Solids:			Sulf	ur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	u
11104-28-2	Aroclor-1221	0.048	U U
11141-16-5	Aroclor-1232	0.048	- U
53469-21-9	Aroclor-1242	0.048	U U
12672-29-6	Aroclor-1248	0.048	- 11
11097-69-1	Aroclor-1254	0.048	
11096-82-5	Aroclor-1260	0.048	11

Lab Name:	TestAmerica Burl	inaton	Lab Code: STLV	TS	\$40079
Contract:	27000		Case: KZOO	SDG:	KAL544
Phase Type:	WATER		Lab Sample ID:	825371	
Phase Weight:	1040.	(mL)	Date Received:	04/08/10	
Injection Volume:	1.0	(uL)	Date Extracted:	04/13/10	· · · · · · · · · · · · · · · · · · ·
Dilution Factor:	1.0		Date Analyzed:	04/29/10	
% Solids:			Sulfur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	U
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	11
11096-82-5	Aroclor-1260	0.048	

Lab Name:	TestAmerica Burli	ngton	A LO LO STIV	т	S40081
Contract:	27000	ngton	Lab Code: STLV Case: KZOO	SDG:	KAL544
Phase Type:	WATER		Lab Sample ID:	825624	
Phase Weight:	1030.	(mL)	Date Received:	04/09/10	
Injection Volume:	1.0	(uL)	Date Extracted:	04/13/10	
Dilution Factor:	1.0		Date Analyzed:	04/29/10	
% Solids:			Sulfur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.049	T U
11104-28-2	Aroclor-1221	0.049	U
11141-16-5	Aroclor-1232	0.049	
53469-21-9	Aroclor-1242	0.049	II.
12672-29-6	Aroclor-1248	0.049	- U
11097-69-1	Aroclor-1254	0.049	
11096-82-5	Aroclor-1260	0.049	

				Т	S40082
Lab Name: _	TestAmerica Burling	ton	Lab Code:STLV		
Contract:	27000		Case: KZOO	SDG:	KAL544
Phase Type:	WATER		Lab Sample ID:	825625	
Phase Weight:	1040.	(mL)	Date Received:	04/09/10	_
Injection Volume:	1.0	(uL)	Date Extracted:	04/13/10	
Dilution Factor:	1.0	_	Date Analyzed:	04/29/10	****
% Solids:		-	Sulfur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	U
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	U
11096-82-5	Aroclor-1260	0.048	U

EPA SAMPLE NO.

(Y/N)

				TS40083	
Lab Name: _	TestAmerica Burling	ıton	_ Lab Code: STLV		
Contract:	27000	_	Case: KZOO	SDG: KAL544	
Phase Type:	WATER	_	Lab Sample ID:	825626	
Phase Weight:	1045.	_ (mL)	Date Received:	04/09/10	
Injection Volume:	1.0	(uL)	Date Extracted:	04/13/10	

Dilution Factor: 1.0

% Solids:

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	U
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	U
11096-82-5	Aroclor-1260	0.048	U

Date Analyzed: 04/29/10

Sulfur Clean-up:

Lab Name	TestAmerica Burl	lington	Lab Code: STLV	TS	40084
Lab Name: _	restAmenta bun	ington	Lab Code: STLV		
Contract:	27000		Case: KZOO	SDG:	KAL544
Phase Type:	WATER		Lab Sample ID:	825627	
Phase Weight:	1050.	(mL)	Date Received:	04/09/10	
Injection Volume:	1.0	(uL)	Date Extracted:	04/13/10	
Dilution Factor:	1.0		Date Analyzed:	04/29/10	
% Solids:			Sulfur Clean-up	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	U
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	U
12672-29-6	Aroclor-1248	0.048	U
11097-69-1	Aroclor-1254	0.048	U
11096-82-5	Aroclor-1260	0.048	U

	Total D. H.				7	FS40085
Lab Name: .	TestAmerica Burli	ngton	Lab Code:	STLV	L	
Contract:	27000		Case:	KZOO	SDG:	KAL544
Phase Type:	WATER		Li	ab Sample ID:	825628	
Phase Weight:	1050.	(mL)	D	ate Received:	04/09/10	
njection Volume:	1.0	(uL)	Da	ate Extracted:	04/13/10	
Dilution Factor:	1.0		D	ate Analyzed:	04/29/10	
% Solids:	****		Su	fur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	
11104-28-2	Aroclor-1221	0.048	- 11
11141-16-5	Aroclor-1232	0.048	u u
53469-21-9	Aroclor-1242	0.048	U U
12672-29-6	Aroclor-1248	0.048	- 11
11097-69-1	Aroclor-1254	0.048	- U
11096-82-5	Aroclor-1260	0.048	U U

Lab Name: ₋	TestAmerica Bur	lington	Lab Code:STLV	Т	S40080
Contract:	27000		Case: KZOO	SDG:	KAL544
Phase Type:	WATER	***	Lab Sample ID:	825629	
Phase Weight:	1045.	(mL)	Date Received:	04/09/10	
njection Volume:	1.0	(uL)	Date Extracted:	04/13/10	
Dilution Factor:	1.0		Date Analyzed:	04/29/10	
% Solids:			Sulfur Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.048	l u
11104-28-2	Aroclor-1221	0.048	U
11141-16-5	Aroclor-1232	0.048	U
53469-21-9	Aroclor-1242	0.048	Ü
12672-29-6	Aroclor-1248	0.048	u u
11097-69-1	Aroclor-1254	0.048	
11096-82-5	Aroclor-1260	0.048	11

Lab Name: _	TestAmerica Buri	lington	Lab Code: STLV	TS31014	
Contract:	27000		Case: KZOO	SDG: KAL5	44
Phase Type:	WATER		Lab Sample ID:	825882	
Phase Weight:	1030.	(mL)	Date Received:	04/10/10	
njection Volume:	1.0	(uL)	Date Extracted:	04/13/10	
Dilution Factor:	1.0		Date Analyzed:	04/29/10	
% Solids:			Sulfur Clean-up:	N	— (Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER
12674-11-2	Aroclor-1016	0.049	U
11104-28-2	Aroclor-1221	0.049	U
11141-16-5	Aroclor-1232	0.049	U
53469-21-9	Aroclor-1242	0.049	Ü
12672-29-6	Aroclor-1248	0.049	U
11097-69-1	Aroclor-1254	0.049	u u
11096-82-5	Aroclor-1260	0.049	U

Lab Name:	TestAmerica Burl	ington	Lab Code:	STLV		TS40087
Contract:	27000		Case: _	KZOO	SDG:	KAL544
Phase Type:	WATER		Lab	Sample ID:	825883	
Phase Weight:	1015.	(mL)	Dat	e Received:	04/10/10	
Injection Volume:	1.0	(uL)	Date	e Extracted:	04/13/10	
Dilution Factor:	1.0		Dat	e Analyzed:	04/29/10	
% Solids:			Sulfu	ır Clean-up:	N	(Y/N)

CAS NO.	COMPOUND	CONCENTRATION ug/L	QUALIFIER	
12674-11-2	Aroclor-1016	0.049	υ	
11104-28-2	Aroclor-1221	0.049	U	
11141-16-5	Aroclor-1232	0.049	U	
53469-21-9	Aroclor-1242	0.049	U	
12672-29-6	Aroclor-1248	0.049	U	
11097-69-1	Aroclor-1254	0.049	U	
11096-82-5	Aroclor-1260	0.049	U	

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

								TS31012
Lab Name:	TestAmer	ica Burlington	Contra	ct: 29000		<u> </u>		
Lab Code:	STLVT	Case No.:	KZOO SAS	3 No.:		SDG No	o.:	KAL544
Matrix (soil	/water):	WATER		Lab Sample ID:		82500	1	
Level (low/m	ed) :	LOW		Date Received:		4/6/2	010	
% Solids:	0.0	_						
		Concentration Un	nits (ug/L or mg	/kg dry weight):		UG/L	· · · · ·	_
		CAS No.	Analyte	Concentration	С	Q	М	
		7440-70-2	Calcium	80500			P	
		7439-95-4	Magnesium	22300	<u> </u>		P	
		7440-23-5	Sodium	29600			P	
		7440-09-7	Potassium	2490	В		P	

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

TS31	.013	

Lab Name: TestAmerica Burlington Contract: 29000

29000 <u>29000</u>

Matrix (soil/water): WATER Lab Sample ID: 825002

Level (low/med): LOW Date Received: 4/6/2010

Level (low/med): LOW Date Received: 4/6/2010
% Solids: 0.0

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7440-70-2	Calcium	85500			 P
7439-95-4	Magnesium	23800			- P
7440-23-5	Sodium	31400	† i		l P
7440-09-7	Potassium	2670	B		l P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-	W				
-					

INORGANIC ANALYSES DATA SHEET

TS400	68

							TS40068
Lab Name:	TestAmer	ica Burlington	Co	ntract:	29000		
Lab Code:	STLVT	Case No.:	<u>KZ00</u>	SAS No.:		SDG No.:	KAL544
Matrix (soi	l/water):	WATER		Lal	o Sample ID:	825003	
Level (low/r	med):	LOW		Da	te Received:	4/6/2010	
% Solids:	0.0	-					
		Concentration Un	its (ug/L o	er mg/kg d:	ry weight):	UG/L	_
						T I	7

CAS No.	Analyte	yte Concentration		Q	М
7440-70-2	Calcium	108000			P
7439-95-4	Magnesium	27900	İ		P
7440-23-5	Sodium	36600	İ		P
7440-09-7	Potassium	2560	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
					
_					

INORGANIC ANALYSES DATA SHEET

Lab Name:	TestAme	rica Burlingto	on Contr	ract: 29000			
Lab Code:	STLVT	Case No.					
			. 1200 S.	AS No.:	_ SDG	No.: KAI	544
Matrix (soi	1/water):	WATER		Lab Sample ID:	825	171	
Level (low/	med):	LOW		Date Received:	4/7	/2010	
% Solids:	0.0						
		•					
		Concentration	Units (ug/L or m	ng/kg dry weight):	<u>UG</u>	<u>/L</u>	
		CAS No.	Analyte	G			
				Concentration	C Q	М	
		7440-70-2	Calcium	246000		P	
		7439-95-4	Magnesium	30700		P	
		7440-23-5	Sodium	49000		P	
		7440-09-7	Potassium	1140	В	P	
Color Bef	ore: co	lorless	Clarity Before:	clear	Textur	e:	
Color Aft	on. li	abt mollow s					
COTOL ALC		ght yellow (Clarity After:	clear	Artifa	cts:	
Comments:							
oommen co.						·	
						_	
				W. W. W. W. W. W. W. W. W. W. W. W. W. W			

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
TS40072

Lab Name:	TestAmer	ica Burlingtor	Contr	act: 29000		L	
Lab Code:	STLVT	Case No.:		AS No.:	S	DG No.:	KAL544
Matrix (soi	l/water):	WATER		Lab Sample ID:	: 8	325174	
Level (low/	med):	LOW		Date Received:	-	1/7/2010	V
% Solids:	0.0					-,.,2020	
		•					
		Concentration U	nits (ug/L or m	g/kg dry weight):		UG/L	
		CAS No.	Analyte	Concentration	С	Q M	
		7440-70-2	Calcium	103000	+	 P	_
		7439-95-4	Magnesium	24200	<u> </u>	P	
		7440-23-5	Sodium	35000	i i	P	 !
		7440-09-7	Potassium	1930	В	P	
Color Befo	ore: colc	rless Cla	arity Before:	clear	Text	ure:	
Color Afte	r: ligh	t yellow Cla	arity After:	clear	Arti	facts:	

Comments:

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

_		 	 -
	TS40073		

Lab Name: TestAr	merica Burlington	Contract: 29000	
Lab Code: STLVT	Case No.: F	ZOO SAS No.:	SDG No.: KAL544
Matrix (soil/water): WATER	Lab Sample ID:	825172
Level (low/med):	LOW	Date Received:	4/7/2010

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7440-70-2	Calcium	176000			P
7439-95-4	Magnesium	40000			P
7440-23-5	Sodium	35300		ļ	P
7440-09-7	Potassium	1130	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

TS	40074	

ica Burlington	Contract: 29000	
Case No.: KZOO	SAS No.:	SDG No.: KAL544
WATER	Lab Sample ID:	825173
LOW	Date Received:	4/7/2010
-		
Concentration Units (ug,	/L or mg/kg dry weight):	UG/L
	WATER LOW	Case No.: KZOO SAS No.: WATER Lab Sample ID:

CAS No.	Analyte	Analyte Concentration		Q	М
7440-70-2	Calcium	168000			P
7439-95-4	Magnesium	38200	Ī		P
7440-23-5	Sodium	33500	Īij		P
7440-09-7	Potassium	1150	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					
-					

INORGANIC ANALYSES DATA SHEET

Lab Name:	TestAme	rica Burlingto	n Cont	ract: 29000	
Lab Code:	STLVT	Case No.:		SAS No.:	SDG No.: KAL544
Matrix (soi	.1/water):	WATER		Lab Sample ID:	825175
Level (low/	med):	LOW		Date Received:	
% Solids:	0.0			Date Received.	4/ // 2010
o borras.	0.0				
		Concentration (Units (ug/L or	mg/kg dry weight):	UG/L
		CAS No.	Analyte	Concentration	С О М
		7440-70-2	Calcium	154000	P
		7439-95-4	Magnesium	31600	P
		7440-23-5	Sodium	11900	P
		7440-09-7	Potassium	5440	P
Color Bef	ore: lig	ght yellow Cl	arity Before:	clear	Texture:
Color Aft	er: lig	ght yellow cl	arity After:	clear	Artifacts:
Comments:					
	P***			7	

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

								TS40076
Lab Name:	TestAmer	cica Burlington	Contr	act: 29000		!		
Lab Code:	STLVT	_ Case No.:	KZOO SZ	AS No.:		SDG No	o.:	KAL544
Matrix (soi	1/water):	WATER	the families are	Lab Sample ID:		82536	8	
Level (low/	med):	LOW		Date Received:		4/8/2	010	
% Solids:	0.0							
		Concentration Un	nits (ug/L or m	g/kg dry weight):		UG/L	l	_
		CAS No.	Analyte	Concentration	С	Q	М	
		7440-70-2	Calcium	116000			P	1
		7439-95-4	Magnesium	28000	I		l P	<u></u>

73400

2120 B

P

P

Sodium

Potassium

7440-23-5

7440-09-7

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

							I	EPA SAMPLE NO.
								TS40077
Lab Name:	TestAme	rica Burlington	Cont	ract: 29000				
Lab Code:	STLVT	Case No.:	KZOO S	SAS No.:		SDG No	o.:	KAL544
Matrix (so	il/water):	WATER		Lab Sample ID	:	82536	9	
Level (low,	med):	LOW		Date Received	:	4/8/2	010	
% Solids:	0.0	_						
		Concentration Un	nits (ug/L or 1	mg/kg dry weight):		UG/L	l	_
		CAS No.	Analyte	Concentration	С	Q	М	
		7440-70-2	Calcium	356000	$\dagger -$		P	[
		7439-95-4	Magnesium	77400	İ		P	<u> </u>
		7440-23-5	Sodium	54400	i	<u> </u>	P	1
		7440-09-7	Potassium	3530	İВ	<u> </u>	P	<u> </u>

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					
•					
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

_		_	
	TS40078		

						TS40078
Lab Name: <u>TestAme</u>	rica Burlington		Contract: 29000		<u> </u>	
Lab Code: STLVT	Case No.:	KZOO	SAS No.:	SDG	No.:	KAL544
Matrix (soil/water):	WATER		Lab Sample	∍ ID: <u>825</u> 3	370	
Level (low/med):	LOW		Date Recei	ived: 4/8,	/2010	
% Solids: 0.0						

Concentration Units (ug/L or mg/kg dry weight): UG/L								
CAS No.	Analyte	Concentration	С	Q	М			
7440-70-2	Calcium	179000	╁		P			
7439-95-4	Magnesium	39700	.		P			
7440-23-5	Sodium	70300	Ī	<u> </u>	P			
7440-09-7	Potassium	2600	В	<u> </u>	P			

Color Before: colorless Clarity Before: clear Texture:

Color After: light yellow Clarity After: clear Artifacts:

Comments:

INORGANIC ANALYSES DATA SHEET

TS40	079	

							1540075
Lab Name:	TestAmer	ica Burlington	Cc	ntract:	29000	<u> </u>	
Lab Code:	STLVT	Case No.:	KZOO	SAS No.:		SDG No.:	KAL544
Matrix (soi	l/water):	WATER		Lab	Sample ID:	825371	
Level (low/	med):	LOW		Dat	e Received:	4/8/2010	
% Solids:	0.0	_					
		Concentration Uni	its (ug/L c	r mg/kg dr	y weight):	UG/L	

CAS No.	Analyte	Concentration	С	Q	М
7440-70-2	Calcium	85400	 		P
7439-95-4	Magnesium	22200	T		P
7440-23-5	Sodium	54800	Ī		P
7440-09-7	Potassium	1950	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					
_					

INORGANIC ANALYSES DATA SHEET

							TS40080
Lab Name: TestAmer	rica Burlingto	n Cont	ract: 29000			 	
Lab Code: STLVT	_ Case No.:	KZOO s	AS No.:		SDG No	·.:	KAL544
Matrix (soil/water):	WATER		Lab Sample ID	:	82562	9	
Level (low/med):	LOW		Date Received	:	4/9/20	010	
% Solids: 0.0	_						
	Concentration	Units (ug/L or m	ng/kg dry weight):		UG/L		
	CAS No.	Analyte	Concentration	С	Q	М	
	7440-70-2	Calcium	110000	-		P	
	7439-95-4	Magnesium	27400	İ	<u>. </u>	P	
	7440-23-5	Sodium	86600	İ		P	
	7440-09-7	Potassium	2220	B	<u> </u>	l p i	

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

									DIA SAMPLE NO.
									TS40081
Lab Name:	TestAmer	rica Burlington	Con	tract:	29000		L		
Lab Code:	STLVT	_ Case No.:	<u>KZ00</u>	SAS No.:			SDG N	10.:	KAL544
Matrix (soi		WATER		Lab	Sample ID	:	8256	24	
Level (low/	med):	LOW		Dat	e Received	:	4/9/2	2010	
% Solids:	0.0								
		Concentration Un	nits (ug/L or	mg/kg dr	y weight):		UG/1	<u> </u>	_
		CAS No.	Analyte	Conce	ntration	С	Q	М	
		7440-70-2	Calcium		154000	╁──	<u> </u>	P	
		7439-95-4	Magnesium		34900	†	<u> </u>	I P	
		7440-23-5	Sodium		73100	i i	<u> </u>	P	
		7440-09-7	Potassium		2230	В		P	
									;

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					
-					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO. TS40082

							TS40082
Lab Name: <u>Tes</u>	tAmerica Burlingto	on Cont	ract: <u>29000</u>		<u> </u>		
Lab Code: STL	VT Case No.	: <u>KZOO</u> s	AS No.:		SDG No	٥.:	KAL544
Matrix (soil/wat	er): WATER		Lab Sample ID):	82562	.5	
Level (low/med):	LOW		Date Received	l:	4/9/2	010	
% Solids: 0.0							
	Concentration	Units (ug/L or m	ng/kg dry weight):		UG/L	1	_
	CAS No.	Analyte	Concentration	С	Q	М	
	7440-70-2	Calcium	160000			l P	! ·
	7439-95-4	Magnesium	34000	<u> </u>		l P	<u>[</u>
	7440-23-5	Sodium	74000	i		 	-

1990

B

P

Potassium

7440-09-7

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

							TS40083
Lab Name: Test	America Burlington	Contra	ct: 29000		<u>L.</u>		
Lab Code: STL	Case No.:	KZOO SAS			SDG No	.:	KAL544
Matrix (soil/wat	er): WATER	-	Lab Sample ID:	8	325626	5	
Level (low/med):	LOW		Date Received:	4	1/9/20	010	
% Solids: 0.0							
	Concentration U	nits (ug/L or mg	/kg dry weight):		UG/L		
	CAS No.	Analyte	Concentration	С	Q	М	
	7440-70-2	Calcium	149000			P	
	7439-95-4	Magnesium	29600		<u> </u>	P	
	7440-23-5	Sodium	72100		<u> </u>	P	
	7440-09-7	Potassium	1	BI	!	-	

1920

B

P

Potassium

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					
-					

INORGANIC ANALYSES DATA SHEET

29000

TestAmerica Burlington Contract:

Lab Name:

Color After:

Comments:

EPA SAMPLE NO. TS40084

Lab Code:	STLVT	Case No.	: KZ00	SAS No.:		SDG No	·.:	KAL544	
Matrix (soi	il/water):	WATER		Lab Sample ID:		82562	7		-
Level (low/	med):	LOW		Date Received:		4/9/2			
% Solids:	0.0								
		Concentration	Units (ug/L or	r mg/kg dry weight):		UG/L		_	
		CAS No.	Analyte	Concentration	С	Q	М	İ	
		7440-70-2	Calcium	152000			P	! 	
		7439-95-4	Magnesium	30300			P		
		7440-23-5	Sodium	74000			P		
		7440-09-7	Potassium	2000	В		P		
Color Befo	ore: col	orless c	larity Before:	clear	Tex	ture:	_		

clear

Artifacts:

light yellow Clarity After:

			INORGANIC ANA	ALYSES DATA SHEI	ET		Ŧ	CPA SAMPLE NO.
						Г		TS40085
Lab Name:	TestAmer	rica Burlington	Contra	act: 29000		<u></u>	***************************************	
Lab Code:	STLVT	Case No.:	KZOO SA:	S No.:		SDG No	· . :	KAL544
Matrix (soi	1/water):	WATER		Lab Sample ID:		82562	8	
Level (low/	med):	LOW		Date Received:		4/9/2		***************************************
% Solids:	0.0							
o sorrus.	0.0	_						
		Concentration Ur	nits (ug/L or mg	/kg dry weight):		UG/L		_
						1	T	- i
		CAS No.	Analyte	Concentration	С	Ω	М	
		7440-70-2	Calcium	115000	[[P	
		7439-95-4	Magnesium	24500			P	
		7440-23-5	Sodium	68600	Ì		P	
		7440-09-7	Potassium	1670	В		P	

Color Before:	COLOTLESS	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					
-					

INORGANIC ANALYSES DATA SHEET

	EPA	SAMPLE	NO.	
		TS31014		
L				

								TS31014
Lab Name:	TestAmer	ica Burlington	Contrac	et: 29000				
Lab Code:	STLVT	Case No.:	KZOO SAS	No.:		SDG No	.:	KAL544
Matrix (soil	./water):	WATER		Lab Sample ID:		825882	2	
Level (low/m	led) :	LOW		Date Received:		4/10/2	2010	
% Solids:	0.0	_						
		Concentration Un	uits (ug/L or mg/	kg dry weight):		UG/L		_
		CAS No.	Analyte	Concentration	С	Q	М	

CAS No.	Analyte	Concentration	С	Q	М
7440-70-2	Calcium	83400			P
7439-95-4	Magnesium	22900	Ī		P
7440-23-5	Sodium	28300	i i		P
7440-09-7	Potassium	2510	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	light yellow	Clarity After:	clear	Artifacts:	
Comments:					
					
	-				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO. TS40087

							- 1	TS40087
Lab Name:	TestAmer	rica Burlington	n Contr	act: 29000)		!	
Lab Code:	STLVT	_ Case No.:	KZOO SA	S No.:		SI	G No.:	KAL544
Matrix (soi	1/water):	WATER		Lab Sampl	le ID:	82	25883	
Level (low/	med):	LOW		Date Rece	eived:	4/	10/20	10
% Solids:	0.0	<u> </u>						
		Concentration (Jnits (ug/L or mo	ŋ/kg dry weig	ght):	<u></u>	JG/L	··········
		CAS No.	Analyte	Concentrati	ion		Q N	1
		7440-70-2	Calcium	455	5000	+	 	
		7439-95-4	Magnesium	146	000	i		-
		7440-23-5	Sodium	44	700	i	i	

5770

Ρ

Potassium

7440-09-7

Color Before: colorless Clarity Before: clear Texture:

Color After: light yellow Clarity After: clear Artifacts:

Comments:

WET CHEMISTRY

Sample Report Summary

Client Sample No.

TS31012

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825001

Matrix: WATER

Client: BBLKAL

Date Received: 04/06/10

% Solids:

	Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
	2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	310	
	2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	o	0.50	15.7	
	5310	Organic Carbon, Total	04/08/10	BLKT0040810A	mg/L	1	1.0	6.3	
			ļ					;	
							3		
1									

Printed on: 05/06/10 01:15 PM

WET CHEMISTRY

Sample Report Summary

Client Sample No.

TS31013

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825002

Matrix: WATER

Client: BBLKAL

Date Received: 04/06/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	343	3.30.00
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.71	15.9	
5310	Organic Carbon, Total	04/08/10	BLKTO040810A	mg/L	1	1.0	6.4	
								:
							7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

Printed on: 05/06/10 01:15 PM

WET CHEMISTRY

Sample Report Summary

Client Sample No. TS40068

Lab Name: TestAmerica Burlington

Contract: 64539,0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825003

Matrix: WATER

Client: BBLKAL

Date Received: 04/06/10

% Solids:

	Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Come	01
	2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	Conc. 483	Qual.
	2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	8.6	
	5310	Organic Carbon, Total	04/08/10	BLKTO040810A	mg/L	1	1.0	2.2	
					:				
L									

Printed on: 05/07/10 01:00 PM

Sample Report Summary

Client Sample No.

TS40071

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825171

Matrix: WATER

Client: BBLKAL

Date Received: 04/07/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qua
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	922	Qua
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	10.9	
5310	Organic Carbon, Total	04/08/10	BLKTO040810A	mg/L	1	1.0	15.0	
		,						
						;		
				7000				
						:		

Sample Report Summary

Client Sample No.

TS40073

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825172

Matrix: WATER

Client: BBLKAL

Date Received: 04/07/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	793	
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	13.1	
5310	Organic Carbon, Total	04/08/10	BLKTO040810A	mg/L	1	1.0	2.8	
				•				
			•					
								:
				1				

Sample Report Summary

Client Sample No.

TS40074

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825173

Matrix: WATER

Client: BBLKAL

Date Received: 04/07/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
2540	Total Dissolved Solids	04/09/10	BLKD\$040910A	mg/L	1	5.0	769	
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	14.4	
5310	Organic Carbon, Total	04/08/10	BLKTO040810A	mg/L	1	1.0	2.9	-
•				į				
			AND THE PROPERTY OF THE PROPER					

Sample Report Summary

Client Sample No.

TS40072

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825174

Matrix: WATER

Client: BBLKAL

Date Received: 04/07/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qua
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	458	
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	12.8	
5310	Organic Carbon, Total	04/08/10	BLKTO040810A	mg/L	1	1.0	3.3	
			:					
						-		
			-					
			4					
			T A STATE OF THE S					
					:			
					!			

Sample Report Summary

Client Sample No.

TS40075

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825175

Matrix: WATER

Client: BBLKAL

Date Received: 04/07/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	601	
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	0.50	U
5310	Organic Carbon, Total	04/09/10	BLKT0040910A	mg/L	2	2.0	22.6	
			1					
			The state of the s					
							ļ	
	-							
				THE PERSON NAMED IN COLUMN NAM				

Sample Report Summary

Client Sample No.

TS40076

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825368

Matrix: WATER

Client: BBLKAL

Date Received: 04/08/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	544	Qual.
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	15,0	
5310	Organic Carbon, Total	04/09/10	BLKTO040910A	mg/L	1	1.0	3.3	

Sample Report Summary

Client Sample No.

TS40077

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825369

Matrix: WATER

Client: BBLKAL

Date Received: 04/08/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	1620	- Quai.
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	15.5	
5310	Organic Carbon, Total	04/09/10	BLKTO040910A	mg/L	1	1.0	7.5	

Sample Report Summary

Client Sample No.

TS40078

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825370

Matrix: WATER

Client: BBLKAL

Date Received: 04/08/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	836	
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	12.1	
5310	Organic Carbon, Total	04/09/10	BLKTO040910A	mg/L	1	1.0	4.9	
						:		
			1					

Sample Report Summary

Client Sample No.

TS40079

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825371

Matrix: WATER

Client: BBLKAL

Date Received: 04/08/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual,
2540	Total Dissolved Solids	04/09/10	BLKDS040910A	mg/L	1	5.0	404	- Quai.
2540	Total Suspended Solids	04/09/10	BLKTS040910A	mg/L	0	0.50	4.4	
5310	Organic Carbon, Total	04/09/10	BLKTO040910A	mg/L	1	1.0	1.5	
			:					
					ļ			
		İ						

Sample Report Summary

Client Sample No.

TS40081

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825624

Matrix: WATER

Client: BBLKAL

Date Received: 04/09/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/14/10	BLKDS041410A	mg/L	1	5.0	803	
2540	Total Suspended Solids	04/13/10	BLKTS041310B	mg/L	0	0.50	17.3	
5310	Organic Carbon, Total	04/12/10	BLKT0041210A	mg/L	1	1.0	5.2	
			THE CONTRACTOR			<u>.</u>		
		5 2 2						
			:					
				-				

Sample Report Summary

Client Sample No.

TS40082

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825625

Matrix: WATER

Client: BBLKAL

Date Received: 04/09/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/14/10	BLKDS041410A	mg/L	1	5.0	807	Z G G I
2540	Total Suspended Solids	04/13/10	BLKTS041310B	mg/L	0	0.50	19.3	
5310	Organic Carbon, Total	04/12/10	BLKT0041210A	mg/L	1	1.0	4.8	
							i	
]			

Sample Report Summary

Client Sample No.

TS40083

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825626

Matrix: WATER

Client: BBLKAL

Date Received: 04/09/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL.	Conc.	Qual.
2540	Total Dissolved Solids	04/14/10	BLKDS041410A	mg/L	1	5.0	761	Quai.
2540	Total Suspended Solids	04/13/10	BLKTS041310B	mg/L	0	0.50	21.1	
5310	Organic Carbon, Total	04/12/10	BLKTO041210A	mg/L	1	1.0	5.1	
						į į		
							1	

Sample Report Summary

Client Sample No. TS40084

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825627

Matrix: WATER

Client: BBLKAL

Date Received: 04/09/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
2540	Total Dissolved Solids	04/14/10	BLKDS041410A	mg/L	1	5.0	754	
2540	Total Suspended Solids	04/13/10	BLKTS041310B	mg/L	0	0.50	20.9	
5310	Organic Carbon, Total	04/12/10	BLKTO041210A	mg/L	1	1.0	5.2	
						:		

Sample Report Summary

Client Sample No.

TS40085

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825628

Matrix: WATER

Client: BBLKAL

Date Received: 04/09/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qua
2540	Total Dissolved Solids	04/14/10	BLKDS041410A	mg/L	1	5.0	643	SKMU
2540	Total Suspended Solids	04/13/10	BLKTS041310B	mg/L	0	0.50	17.9	
5310	Organic Carbon, Total	04/12/10	BLKT0041210A	mg/L	1	1.0	4.5	
		<u>.</u>						
77.77								

Sample Report Summary

Client Sample No.

TS40080

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825629

Matrix: WATER

Client: BBLKAL

Date Received: 04/09/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
2540	Total Dissolved Solids	04/14/10	BLKDS041410A	mg/L	1	5.0	649	
2540	Total Suspended Solids	04/13/10	BLKTS041310B	mg/L	0	0.50	9.5	
5310	Organic Carbon, Total	04/12/10	BLKT0041210A	mg/L	1	1.0	2.3	***************************************
		ę.						

					:			
			5 5 6 7 7					

Sample Report Summary

Client Sample No. TS31014

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825882

Matrix: WATER

Client: BBLKAL

Date Received: 04/10/10

% Solids:

 Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	0
2540	Total Dissolved Solids	04/14/10	BLKDS041410A	mg/L	1	5.0	397	Qual.
2540	Total Suspended Solids	04/13/10	BLKTS041310B	mg/L	0	0.50	23.9	
5310	Organic Carbon, Total	04/12/10	BLKTO041210A	mg/L	1	1.0	6.3	
						:	***************************************	
								Towns and the second
							r	

Printed on: 05/07/10 01:00 PM

Sample Report Summary

Client Sample No.

TS40087

Lab Name: TestAmerica Burlington

Contract: 64539.0.005

SDG No.: KAL544

Lab Code: TALVT

Case No.: KZOO

Lab Sample ID: 825883

Matrix: WATER

Client: BBLKAL

Date Received: 04/10/10

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL.	Conc.	Qua
2540	Total Dissolved Solids	04/21/10	BLKD\$042110A	mg/L	2	10.0	2470	
2540	Total Suspended Solids	04/13/10	BLKT\$041310B	mg/L	0	0.50	44.2	
5310	Organic Carbon, Total	04/12/10	BLKT0041210A	mg/L	1	1.0	11.0	
					i			
					i E			

Client: TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS31012

Lab Sample ID:

500-24968-1

Client Matrix:

Water

Date Sampled: 04/05/2010 1430

Analyte Chloride		Result	Qual (Jnits	MDL	RL	Dil	Method
Chloride		56	Г	ng/L	0.30	2.0	10	300.0
	Analysis Batch:	500-84119 Date	Analyzed	: 04/16/20	10 2118			400.0
Sulfate		35	r	na/L	0.53	2.0	10	300.0
	Analysis Batch:	500-84119 Date	Analyzed:	04/16/20	10 2118	0	10	300.0
Alkalinity		230		na/L	1.3	5.0	4.0	0404
	Analysis Batch:	500-84223 Date	Analyzed:	04/19/20	10 1248	5.0	1,0	310.1

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

Client Sample ID: TS31013

Lab Sample ID: 500-24968-2

Client Matrix: Water

Date Sampled: 04/05/2010 0000

Analyte		Result	Qual Units	MDL	RL	Dìl	Method
Chloride		58	mg/L	0.30	2.0	10	300.0
	Analysis Ba	atch: 500-84119 Date	Analyzed: 04/16/	2010 2132			
Sulfate		36	mg/L	0.53	2.0	10	300.0
	Analysis Ba	atch: 500-84119 Date	Analyzed: 04/16/	2010 2132			000.0
Alkalinity		240	mg/L	1.3	5.0	1.0	310.1
	Analysis Ba	atch: 500-84223 Date	Analyzed: 04/19/	2010 1311	0.0	1,0	010.1

Client:

TestAmerica Laboratories, Inc.

rum

Job Number:

500-24968-1

_	
General	Chemistry

Client Sample ID: 7331014 7540068

Water

Lab Sample ID: Client Matrix:

500-24968-3

Date Sampled: 04/05/2010 1140

Analyte		Result	Qual Units	MDL	RL	Dìl	Method
Chloride		39	mg/L	0.30	2.0	10	300.0
	Analysis Ba	itch: 500-84119 Date	Analyzed: 04/16/	2010 2147		,-	*****
Sulfate		110	mg/L	2.6	10	50	300.0
	Analysis Ba	itch: 500-84298 Date	Analyzed: 04/20/	2010 1323			000.0
Alkalinity		260	mg/L	1.3	5.0	1.0	310.1
	Analysis Ba	itch: 500-84223 Date	Analyzed: 04/19/	2010 1319		1.0	0.4.1

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General	Chemistry

Client Sample ID: TS40071 Lab Sample ID: 500-24968-4

Client Matrix:

Water

Date Sampled: 04/06/2010 0920

Analyte	Result	Qual Units	MDL	RL	Dìl	Method
Chloride	75	mg/L	0.30	2.0	10	300.0
	Analysis Batch: 500-84119 [ate Analyzed: 04/16/	/2010 2230			
Sulfate	220	mg/L	2.6	10	50	300.0
	Analysis Batch: 500-84298 [ate Analyzed: 04/20/	/2010 1406			
Alkalinity	450	mg/L	1.3	5.0	1.0	310.1
	Analysis Batch: 500-84223 [ate Analyzed: 04/19/	/2010 1334			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Che	emistry
-------------	---------

Client Sample ID: TS40073

Lab Sample ID:

500-24968-5

Client Matrix:

Water

Date Sampled: 04/06/2010 1140

Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Chloride		50		mg/L	0.30	2.0	10	300.0
	Analysis Bat	ch: 500-84119 Date	Analyze	ed: 04/16	/2010 2244			
Sulfate		330		mg/L	2.6	10	50	300.0
	Analysis Bat	ch: 500-84298 Date	Analyze	ed: 04/20	/2010 1421			
Alkalinity		230		mg/L	1.3	5.0	1.0	310.1
	Analysis Bat	ch: 500-84223 Date	Analyze	ed: 04/19	/2010 1342		.,_	

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

the second of th

Client Sample ID: TS40074

Lab Sample ID:

500-24968-6

Client Matrix:

Water

Date Sampled: 04/06/2010 0000

Analyte		Result	Qual Units	MDL	RL	Dil	Method
Chloride		50	mg/L	0.30	2,0	10	300.0
	Analysis	Batch: 500-84119 Date	Analyzed: 04/16/	2010 2258			
Sulfate		340	mg/L	2.6	10	50	300.0
	Analysis Batch: 500-84298 Da		Analyzed: 04/20/2010 1435			95	000.0
Alkalinity		220	ma/L	1.3	5.0	1.0	310.1
	Analysis	Batch: 500-84223 Date	Analyzed: 04/19/		0.0	7.0	510.1

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS40072 Lab Sample ID:

Client Matrix:

500-24968-7

Water

Date Sampled: 04/06/2010 0930

Analyte	Result	Qual Units MDL	RL	Dil	Method
Chloride	60	mg/L 0.30	2.0	10	300.0
	Analysis Batch: 500-84119 Da	te Analyzed: 04/16/2010 2313			
Sulfate	79	mg/L 0.53	2.0	10	300.0
	Analysis Batch: 500-84119 Da	te Analyzed: 04/16/2010 2313			
Alkalinity	270	mg/L 1.3	5.0	1.0	310.1
	Analysis Batch: 500-84223 Da	te Analyzed: 04/19/2010 1357			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS40075

Lab Sample ID:

500-24968-8

Client Matrix:

Water

Date Sampled: 04/06/2010 1155

Analyte		Result	Qual Units	MDL	RL.	Dil	Method
Chloride		12	mg/L	0.30	2.0	10	300.0
	Analysis Batch:	500-84119 Date	Analyzed: 04/16/	2010 2327			
Sulfate		110	mg/L	2.6	10	50	300.0
	Analysis Batch:	500-84298 Date	Analyzed: 04/20/	2010 1449			
Alkalinity		360	mg/L	1,3	5.0	1.0	310.1
	Analysis Batch:	500-84223 Date	Analyzed: 04/19/	2010 1405			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS40076

Lab Sample ID:

500-24968-9

Client Matrix:

Water

Date Sampled: 04/07/2010 0830

Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Chloride		110	`₿、	mg/L	1.5	10	50	300.0
	Analysis Batch:	500-84298 Date	Analyz	ed: 04/20	/2010 1504			
Sulfate		46		mg/L	0.53	2.0	10	300.0
	Analysis Batch:	500-84119 Date	Analyz	ed: 04/17/	/2010 0010			505.5
Alkalinity		330		ma/L	1.3	5.0	1.0	310.1
	Analysis Batch:	500-84223 Date	Analyz	ed: 04/19/	/2010 1414			U (U , I

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS40077

Lab Sample ID:

500-24968-10

Client Matrix:

Water

Date Sampled: 04/07/2010 0925

Analyte			Result	Qual	Units	MDL	RL	Dil	Method
Chloride			68		mg/L	0.30	2.0	10	300.0
	Analysis	Batch:	500-84119 Date	Analyze	d: 04/17/	2010 0024			
Sulfate			770		mg/L	5.3	20	100	300.0
	Analysis	Batch:	500-84298 Date	Analyze	d: 04/20/	2010 1547			000.0
Alkalinity			390	•	mg/L	1.3	5.0	1.0	310.1
	Analysis	Batch:	500-84223 Date	Analyze	d: 04/19/	2010 1422		.,,	0,0.,

Client:

TestAmerica Laboratories, Inc.

Job Number.

500-24968-1

General Chemistry

Client Sample ID: TS40078

Lab Sample ID:

500-24968-11

Client Matrix:

Water

Date Sampled: 04/07/2010 1045

Analyte		Result	Qual Units	MDL	RL	Dil	Method
Chloride		110	B mg/L	1.5	10	50	300.0
	Analysis Batch	: 500-84298 Date	Analyzed: 04/20/	2010 1601			
Sulfate		220	mg/L	2.6	10	50	300.0
	Analysis Batch	: 500-84298 Date	Analyzed: 04/20/	2010 1601			
Alkalinity		350	mg/L	1.3	5.0	1.0	310.1
	Analysis Batch	: 500-84223 Date	Analyzed: 04/19/	2010 1445	- · · •	1,0	C. C. I

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS40079

Lab Sample ID:

500-24968-12

Client Matrix:

Water

Date Sampled: 04/07/2010 1240

Analyte	Result	Qual Units	MDL	RL	Dil	Method
Chloride	83	`B, mg/L	1.5	10	50	300.0
	Analysis Batch: 500-84298	Date Analyzed: 04/20	0/2010 1615			
Sulfate	38	mg/L	2.6	10	50	300.0
	Analysis Batch: 500-84298	Date Analyzed: 04/20	0/2010 1615			
Alkalinity	260	mg/L	1.3	5.0	1.0	310.1
	Analysis Batch: 500-84223	Date Analyzed: 04/19	9/2010 1453			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General	Chemistry
---------	-----------

Client Sample ID: TS40081

Lab Sample ID: 500-24968-13

Client Matrix:

Water

Date Sampled: 04/08/2010 1000

Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Chloride		110	B	mg/L	1.5	10	50	300.0
	Analysis Batch	i: 500-84298 Date	Analyz	ed: 04/20	/2010 1630			
Sulfate		140		mg/L	2.6	10	50	300.0
	Analysis Batch	: 500-84298 Date	Analyz	ed: 04/20	/2010 1630			000.0
Alkalinity		350		mg/L	1.3	5.0	1.0	310.1
	Analysis Batch	: 500-84223 Date	Analyz	ed: 04/19	/2010 1501		1.0	010.1

Client:

Client Sample ID: TS40082

Lab Sample ID:

Client Matrix:

TestAmerica Laboratories, Inc.

500-24968-14

Water

Job Number:

500-24968-1

Gener	ral Chemi	stry				
				•	04/08/2010 04/13/2010	
Ount	Unite	MEN	D1	D.1	N. 6 (15	

Analyte		Result	Qual Units	MDL	RL	Dil	Method
Chloride		120	B mg/L	1.5	10	50	300.0
	Analysis Batch	: 500-84298 Date	Analyzed: 04/20	/2010 1644			
Sulfate		150	mg/L	2.6	10	50	300.0
	Analysis Batch	: 500-84298 Date	Analyzed: 04/20	/2010 1644			
Alkalinity		330	mg/L	1.3	5.0	1.0	310.1
	Analysis Batch	: 500-84223 Date	Analyzed: 04/19	/2010 1508			

Client: TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemi	strv
---------------	------

Client Sample ID: TS40083

Lab Sample ID:

Client Matrix:

500-24968-15

Water

Date Sampled: 04/08/2010 1145

Analyte	Re	esult Qua	al Units	MDL	RL	Dìi	Method
Chloride	12	20 B	mg/L	1.5	10	50	300.0
	Analysis Batch: 500-l	84298 Date Anal	yzed: 04/20/	2010 1658			
Sulfate		10 J	mg/L	2.6	10	50	300.0
	Analysis Batch: 500-l	84298 Date Analy	yzed: 04/20/	2010 1658			000.0
Alkalinity		50	ma/L	1.3	5.0	1.0	310.1
	Analysis Batch: 500-6	84223 Date Analy	zed: 04/19	2010 1531	2.2	0,1	010.1

Client: TestAmerica Laboratories, Inc. Job Number:

500-24968-1

General	Chemistry
---------	-----------

Client Sample ID: TS40084

Lab Sample ID: 500-24968-16

Water

Client Matrix:

Date Sampled: 04/08/2010 0000

Analyte		Result	Qual Units	MDL	RL	Dil	Method
Chloride		29	`B√J mg/L	1.5	10	50	300.0
	Analysis Batch: 50	0-84298 Date	Analyzed: 04/20/2	2010 1713			
Sulfate		21	J mg/L	2.6	10	50	300.0
	Analysis Batch: 50	00-84298 Date	Analyzed: 04/20/2	2010 1713			
Alkalinity		340	mg/L	1.3	5.0	1.0	310.1
_	Analysis Batch: 50	00-84223 Date	Analyzed: 04/19/2	2010 1539			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

Client Sample ID: TS40085

Lab Sample ID: 500-24968-17

Client Matrix:

Water

Date Sampled: 04/08/2010 1410

Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Chloride		110	B	mg/L	1.5	10	50	300.0
	Analysis Batch	: 500-84298 Date	Analyz	ed: 04/20	/2010 1727			
Sulfate		87		mg/L	2.6	10	50	300.0
	Analysis Batch	: 500-84298 Date	Analyz	ed: 04/20	/2010 1727			
Alkalinity		280		mg/L	1.3	5.0	1.0	310.1
	Analysis Batch	: 500-84223 Date	Analyz	ed: 04/19	/2010 1546			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

Client Sample ID: TS40080 Lab Sample ID: 500-24968-18

Client Matrix:

Water

Date Sampled: 04/08/2010 0915

Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Chloride		130	B	mg/L	1.5	10	50	300.0
	Analysis Batc	n: 500-84298 Date	Analyz	ed: 04/20/	2010 1741		**	555,5
Sulfate		68		mg/L	2.6	10	50	300.0
	Analysis Batc	n: 500-84298 Date	Analyz	ed: 04/20/	2010 1741			00010
Alkalinity		290		mg/L	1.3	5.0	1.0	310.1
	Analysis Batc	n: 500-84223 Date	Analyz	ed: 04/19/	2010 1553			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS40086 TS3,014

Lab Sample ID:

Jum

Client Matrix:

500-24968-19 Water

Date Sampled: 04/09/2010 0915

Analyte		Result	Qual	Units	MDL	RL	Dil	Method
Chloride		47	B	mg/L	1.5	10	50	300.0
	Analysis Ba	itch: 500-84298 Date	Analyze	ed: 04/20	/2010 1756			
Sulfate		30		mg/L	2.6	10	50	300.0
	Analysis Ba	itch: 500-84298 Date	Analyze	ed: 04/20	/2010 1756			
Alkalinity		230		mg/L	1.3	5.0	1.0	310.1
	Analysis Ba	itch: 500-84223 Date	Analyze	ed: 04/19	/2010 1616			

Client:

TestAmerica Laboratories, Inc.

Job Number:

500-24968-1

General Chemistry

Client Sample ID: TS40087

Lab Sample ID: Client Matrix:

500-24968-20

Water

Date Sampled: 04/09/2010 0940

Analyte		Result	Qual Units	MDL	RL	Dil	Method
Chloride		34	B mg/L	1.5	10	50	300.0
	Analysis Batch:	500-84298 Date	Analyzed: 04/20/	/2010 1907			
Sulfate		1200	mg/L	26	100	500	300.0
	Analysis Batch:	500-84419 Date	Analyzed: 04/21/	/2010 0901			
Alkalinity		350	mg/L	1.3	5.0	1.0	310.1
	Analysis Batch:	500-84223 Date	Analyzed: 04/19	/2010 1631			

ARCADIS
Infrastructure, environment, buildings

15016

<u>;</u>;

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order#

Page of

NL - NAPL/Oil SW - Sample Wipe Container Information Key: Laboratory Received By 1, 40 ml Vial
2, 1 L Amber
3, 250 ml Plastic
4, 500 ml Plastic
5, Encore 6. 2 oz. Glass 7. 4 oz. Glass 8. 8 oz. Glass 9. Other: 10.0ther. SE - Sediment SL - Sludge A - Air Keys Printed Name Preservation Key: REMARKS Matrix Key: SO - Soil W - Water T - Tissue C. HNO, D. NaOH E. None F. Other. G. Other: H. Other: Relinquished By Printed Name رل The PARAMETER ANALYSIS & METHOD 1996 7 Ш Special QA/QC Instructions(<): X X Received By X X T X X Printed Name Ш Х Χ 4 χ X X X 2 X Ŋ X 582/ 14° # of Containers Preservative Container Information Filtered (<) X X X X Eric. Hitsuk edleds-usico Matrix 7 3 1 312-332-41937424 7 130064539, 6000, 000500 1287 Grab Type (✓) Comp Cooler Custody Seal (✓) 332 4/-5-10 1430 1140 Date. Time 9/1// 11410 Collection Laboratory Information and Receipt 145-10 3/2 E-mail Address: 4.5% 45-10 4.5.16 Telephone: 60603 Morroe ST Painwell Giv Scrup lin Mathiak Sample ID 7540068 MSD MS Special Instructions/Comments: 75 40068 754/0070 Contact & Company Name: 7540068 15 40069 30 6 Michael ab Name:

1240/Valor

Firm:

Firm/Courier Date/Time:

Firm/Courier:

PedOD

Date/Time:

1700

1/5-10

Signature:

Michael

□ Not Intact

☐ Intact

Burlisto

18/

Cooler packed with ice (<)

Specify Turnaround Requirements:

Signature

Ort 106/10 1050

YELLOW - Lab copy

WHITE - Laboratory returns with results

Distribution:

20730826 CofC AR Form 01.12.2007

ð

Shipping Tracking #:

Condition/Cooler Temp:

Sample Receipt:

ARCADIS Infrastructure, environment, buildings

15019 <u>;</u>

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order#

Page of

NL - NAPL/Oil SW - Sample Wipe Date/Time: 4/7/10 1640 Kris Kalb " Brankoller Laboratory Received By 1. 40 ml Vlal
2. 1 L-Amber
3. 250 ml Plastic
4. 500 ml Plastic
5. Encore
6. 2 oz. Glass
7. 4 oz. Glass
7. 4 oz. Glass
8. 8 oz. Glass
9. Other: 10, Other: SE - Sediment SL - Sludge A - Air Printed Name: REMARKS Matrix Key: SO - Soil W - Water T - Tissue A. H,SO, B. HCL. C. HNO, D. NaOH E. None F. Other: H, Other: G. Other: Firm/Courier Date/Time: Signature: PARAMETER ANALYSIS & METHOD □ Special QA/QC Instructions(√): X Received By Ш X X T inted Name: Firm/Courier M Date/Time: SQ ¥ 义 X X 2.12 C 03 d 12 C 03 d Relinquished By N HACANIS DateTine: 1-6-10 Preservative # of Containers Filtered (✓) Container Information II 60603 Inc. How Isok etherds espen Matrix 3 7 7 7 7 Condition/Cooler Temp. 0.607 120 (4534.0000.0000)
Sample's Stifflener! Maria St 312-332-4432 X X □ Not Infact X Comp Grab Type (*) × 312-332-4937 Cooler Custody Seal (Y) 46-10 1155 Time 46-10 0920 9-6-10 11-10 46-10 0430 Collection Sample Receipt: Laboratory Information and Receipt X Intact 4.9.17 Sample ID Breiza Special Instructions/Comments: Gooler packed with ice (<) 30 6 15 40074 7540073 TS 40075 Contact & Company Name 75 4007 754100 72 Michael 14:51 wet 11 Eric 125/ ab Name:

20730826 CofC AR Form 01.12.2007

Distribution:

WHITE - Laboratory returns with results

YELLOW - Lab copy

PINK - Retained by ARCADIS

ARCADIS Infrastructure, environment, buildings

15030

<u>□#</u>:

CHAIN OF CUSTODY & LABORATORY **ANALYSIS REQUEST FORM**

Lab Work Order # Page 1 of

NL - NAPL/Oil SW - Sample Wipe Other: Laboratory Received By 2. 1 L Amber
3. 250 ml Plastic
4. 500 ml Plastic
5. Encore
6. 2 oz. Glass
7. 4 oz. Glass
8. 8 oz. Glass
9. Other: ______ 10.Other. SE - Sediment SL - Sludge A - Air Preservation Key:
A. H.SO.
B. HCL.
C. HNO.
D. NaOH
E. None
F. Other: REMARKS Matrix Key; SO - Soil W - Water T - Tissue H. Other: G. Other: Relinquished By Printed Name: PARAMETER ANALYSIS & METHOD (4/0/2/2) W X ☐ Special QA/QC Instructions(<): X X M X X X 22 Printed Name: M X X 501 4 N M X Relinquished By N X X 10/2/23 # of Containers Preservative Filtered (17) Container Information X X 乂 X Matrix Ľ Fic. Hr. tsoke Arcads-US Com-2 2 7 1300 & 4/539.0000.00500 Samplers 48 frame: 11 Lettern 312-332-41432 312-332-41937 Comp Grab X X X Type (<) Cooler Custody Seal (✓) 47-16 0830 4-7-10 1045 1-7-10 15-10 4-7-10/0925 Time Collection Laboratory Information and Receipt Date 60603 Marroe ST Minutell Giv Sampling Michiel Name: est America Sample ID Special Instructions/Comments: Chicaton (City, State): 7540076 75 40078 75 40079 30 W 75 4100 77 Eric Lab Name:

20730826 CofC AR Form 01.12.2007

Distribution:

Condition/Cooler Temp: $\lambda,\lambda,\psi,\beta$

Sample Receipt:

WHITE - Laboratory returns with results Date/Time:

170C1

Menas

Firm. 54-BUNINATES

Firm/Courier

Firm/Courier:

Signature:

□ Not Intact

X Intact

T-Cooler packed with ice (<)

Specify Tumaround Requirements

Stard

Date/Time:

Signature:

Date/Time:

PINK - Retained by ARCADIS

YELLOW - Lab copy

Date Time: Date Time:

RARCADIS Infrastructure, environment, buildings

1503t

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Lab Work Order#

Page | of |

NL - NAPL/Oil SW - Sample Wipe Container Information Key: SIO 010世代 Nr. S. Kolo Laboratory Received By 1 L Amber
 250 ml Plastic
 500 ml Plastic 6. 2 oz. Glass 7. 4 oz. Glass 8. 8 oz. Glass 9. Other. 40 ml Vial 5. Encore 10.Other. SE - Sediment SL - Sludge A - Air Keys Printed Name: Date/Time: Preservation Key:
A. H.SO.
B. HOL.
C. HNO.
D. NaOH
E. None
F. Other: REMARKS Matrix Key: SO - Soil W - Water T - Tissue G. Other: H. Other: Relinquished By Printed Name: Firm/Courier: Date/Time: PARAMETER ANALYSIS & METHOD X W X X □ Special QA/QC Instructions(X X Received By IJ X X X X Printed Name: 11 Firm/Courier: X X X Date/Time: X X X 1000 polos 1 X X X X 1.1 1700 Relinquished By N N X X X X X JOK 1263 # of Containers Preservative Filtered (<) Container Information 01-8-17 X X X Eric Hritsok & Arcadis US.Co. Matrix 7 Ę 3 3 3 800 6453 4,0000.00520 7 15.50JH 312 - 332-4432 E-mail Address: 312-332-4937 X X □ Not Infact Grab X X Type (≺) Comp Cooler Custody Seal (✓) Condition/Cooler Temp: 4.8-10 1150 24-11 1145 118-10 0315 4-840 1000 4.8-10 1-18 Date Time 4810 -Sample Receipt: Collection Laboratory Information and Receipt Kintact 60603 Sampling Marioe ST Test america Mathia Sample ID Special Instructions/Comments: 64 Cooler packed with ice (✓) 75 40082 Contact & Company Name 1800451 7540080 7540083 75 HOUSY TSylogss 30 E Hairace II 781 .ab Name: Send Results to:

PINK - Retained by ARCADIS

YELLOW - Lab copy

WHITE - Laboratory returns with results

Distribution:

20730826 CofC AR Form 01.12.2007

RARCADIS Infrastructure, environment, buildings

15035 <u>#</u>

CHAIN OF CUSTODY & LABORATORY **ANALYSIS REQUEST FORM**

Lab Work Order #

Page of

NL - NAPL/Oil SW - Sample Wipe Other: Date/Time: HI I GI (O 6950 Container Information Key: ris Kolb Laboratory Received By 1. 40 ml Vial
2. 1 L Amber
3. 250 ml Plastic
4. 500 ml Plastic Encore
 2 oz. Glass
 4 oz. Glass
 8 oz. Glass 8. 8 oz. Gla: 9. Other: 10.Other: SE - Sediment SL - Sludge A - Air Printed Name: Preservation Key: REMARKS Matrix Key: SO - Soil W - Water T - Tissue A. H₂SO₄ B. HCL C. HNO₃ D. NaOH E. None H, Other: G. Other: Printed Name Firm/Courier Signature: 12/0 14/0/4 PARAMETER ANALYSIS & METHOD 141 ☐ Special QA/QC Instructions(</): Received By X Ш. 2 X 227 Printed Name X 11 Firm/Courier Date/Time: X 2007 Q X 64 X 15/6/ 019 Car fair 3,166,10 (70/4/ X ARCADES # of Containers Preservative lichus) Filtered (Y) Container Information χ X Fiz. Hri 150k@ Arculis-US. Com Project# Matrix 1. 122× Ş 800 64534000.005000 Sample Sam | Condition/Cooler Temp: $||\mathcal{H}_1'||_{\mathcal{C}}^2$ Comp Grab ☐ Not Intact 312 332 - 4434 -3.32 2/937 Type (✓) Cooler Custody Seal (<) 4910 0940 Date Time 4-910 0915 4-9-10 095 4-9-10 OS15 Collection Sample Receipt: 乡 Intact Laboratory Information and Receipt 3/2 Telephone 60603 My 10c ST State Zp Color Scornophing Muthe Bucliagles Sample ID CSW 380012 ST 7546086 MS Special Instructions/Comments: 'N' Cooler packed with ice (Specify Turnaround Requirements 5 14- 0ts. Contact & Company Name 7540087 154co 86 30 W 11 minus Fric Shipping Tracking #: Lab Name: Send Results to:

PINK - Retained by ARCADIS

YELLOW – Lab copy

WHITE - Laboratory returns with results

Distribution:

20730826 CofC AR Form 01.12.2007

Date/Time: